मराठी

The Domain of Cos − 1 ( X 2 − 4 ) is (A) [3, 5] (B) [−1, 1] (C) [ − √ 5 , − √ 3 ] ∪ [ √ 3 , √ 5 ] (D) [ − √ 5 , − √ 3 ] ∩ [ √ 3 , √ 5 ] - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 

पर्याय

  • [3, 5]

  • [−1, 1]

  •  \[\left[ - \sqrt{5}, - \sqrt{3} \right] \cup \left[ \sqrt{3}, \sqrt{5} \right]\]

  •  \[\left[ - \sqrt{5}, - \sqrt{3} \right] \cap \left[ \sqrt{3}, \sqrt{5} \right]\]

MCQ

उत्तर

The domain of \[\cos^{- 1} \left( x \right)\] is [-1, 1]

\[\therefore - 1 \leq x^2 - 4 \leq 1\]
\[ \Rightarrow - 1 + 4 \leq x^2 - 4 + 4 \leq 1 + 4\]
\[ \Rightarrow 3 \leq x^2 \leq 5\]
\[ \Rightarrow \pm \sqrt{3} \leq x \leq \pm \sqrt{5}\]
\[ \Rightarrow x \in \left[ - \sqrt{5}, - \sqrt{3} \right] \cup \left[ \sqrt{3}, \sqrt{5} \right]\]

Hence, the correct answer is option (c).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 34 | पृष्ठ १२२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  (7pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`sec(sin^-1  12/13)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`cos(tan^-1  3/4)`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`tan^-1  2/3=1/2tan^-1  12/5`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of cos−1 (cos 6).


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Find the domain of `sec^(-1) x-tan^(-1)x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×