मराठी

Evaluate: `Cos(Tan^-1 3/4)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`cos(tan^-1  3/4)`

उत्तर

We have

`cos(tan^-1  3/4)=cos[1/2cos^-1((1-(3/4)^2)/(1+(3/4)^2))]`   `[therefore 2tan^-1x+cos^-1((1-x^2)/(1+x^2))]`

`=cos[1/2cos^-1(7/25)]`

Let

`y=cos^-1(7/25)`

`=>cosy=7/25`

Now,

`cos[1/2cos^-1(7/25)]=cos[1/2y]`

`=sqrt((cosy+1)/2)`    `[thereforecos2x=2cos^2x-1]`

`=sqrt((7/25+1)/2)`

`=sqrt(32/50)`

`=4/5`

`therefore cos[tan^-1(3/4)]=4/5`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.09 | Q 2.3 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin  (17pi)/8)`


`sin^-1(sin4)`


Evaluate the following:

`tan^-1(tan12)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Write the value of sin (cot−1 x).


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


What is the principal value of `sin^-1(-sqrt3/2)?`


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×