Advertisements
Advertisements
प्रश्न
Evaluate:
`cos(tan^-1 3/4)`
उत्तर
We have
`cos(tan^-1 3/4)=cos[1/2cos^-1((1-(3/4)^2)/(1+(3/4)^2))]` `[therefore 2tan^-1x+cos^-1((1-x^2)/(1+x^2))]`
`=cos[1/2cos^-1(7/25)]`
Let
`y=cos^-1(7/25)`
`=>cosy=7/25`
Now,
`cos[1/2cos^-1(7/25)]=cos[1/2y]`
`=sqrt((cosy+1)/2)` `[thereforecos2x=2cos^2x-1]`
`=sqrt((7/25+1)/2)`
`=sqrt(32/50)`
`=4/5`
`therefore cos[tan^-1(3/4)]=4/5`
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin (17pi)/8)`
`sin^-1(sin4)`
Evaluate the following:
`tan^-1(tan12)`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Write the value of sin (cot−1 x).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
What is the principal value of `sin^-1(-sqrt3/2)?`
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.