Advertisements
Advertisements
प्रश्न
Evaluate the following:
`tan^-1(tan12)`
उत्तर
We know that
`tan^-1(tantheta)=theta, -pi/2<theta<pi/2`
We have
`tan^-1(tan12)=tan^-1[tan(-4pi+12)]`
= 12 - 4π
APPEARS IN
संबंधित प्रश्न
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`cot(tan^-1a+cot^-1a)`
`sin^-1x=pi/6+cos^-1x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of sin−1 (sin 1550°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of `sin^-1(-1/2)`
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
If tan−1 (cot θ) = 2 θ, then θ =
Find the domain of `sec^(-1) x-tan^(-1)x`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`