मराठी

The Number of Real Solutions of the Equation √ 1 + Cos 2 X = √ 2 Sin − 1 ( Sin X ) , − π ≤ X ≤ π (A) 0 (B) 1 (C) 2 (D) Infinite - Mathematics

Advertisements
Advertisements

प्रश्न

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]

पर्याय

  • 0

  • 1

  • 2

  • infinite

MCQ

उत्तर

(c) 2

\[For, - \pi \leq x \leq \frac{- \pi}{2}\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \sqrt{2} \left( - \cos x \right) = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \cos{x} = \pi + x \]
\[\text{ It does not satisfy for any value of x in the interval }\left( - \pi, \frac{- \pi}{2} \right)\]
\[For, \frac{- \pi}{2} \leq x \leq \frac{\pi}{2}\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( x \right)\]
\[ \Rightarrow \sqrt{2} \left( \cos x \right) = \sqrt{2} \left( x \right)\]
\[ \Rightarrow \cos{x} = x \]
\[\text{ It gives one value of x in the interval }\left( \frac{- \pi}{2}, \frac{\pi}{2} \right)\]
\[For, \frac{\pi}{2} \leq x \leq \pi\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \sqrt{2} \left( - \cos x \right) = \sqrt{2} \left( \pi - x \right)\]
\[ \Rightarrow \cos{x} = - \pi + x \]
\[\text{ It gives one value of x in the interval } \left( \frac{\pi}{2}, \pi \right)\]
\[\therefore \sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x) \text {gives two real solutions in the interval }\left[ - \pi, \pi \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 10 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`cos{sin^-1(-7/25)}`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos−1 (cos 6).


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×