Advertisements
Advertisements
प्रश्न
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
पर्याय
0
1
2
infinite
उत्तर
(c) 2
\[For, - \pi \leq x \leq \frac{- \pi}{2}\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \sqrt{2} \left( - \cos x \right) = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \cos{x} = \pi + x \]
\[\text{ It does not satisfy for any value of x in the interval }\left( - \pi, \frac{- \pi}{2} \right)\]
\[For, \frac{- \pi}{2} \leq x \leq \frac{\pi}{2}\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( x \right)\]
\[ \Rightarrow \sqrt{2} \left( \cos x \right) = \sqrt{2} \left( x \right)\]
\[ \Rightarrow \cos{x} = x \]
\[\text{ It gives one value of x in the interval }\left( \frac{- \pi}{2}, \frac{\pi}{2} \right)\]
\[For, \frac{\pi}{2} \leq x \leq \pi\]
\[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x)\]
\[ \Rightarrow \sqrt{2} \left| \cos x \right| = \sqrt{2} \left( - \pi - x \right)\]
\[ \Rightarrow \sqrt{2} \left( - \cos x \right) = \sqrt{2} \left( \pi - x \right)\]
\[ \Rightarrow \cos{x} = - \pi + x \]
\[\text{ It gives one value of x in the interval } \left( \frac{\pi}{2}, \pi \right)\]
\[\therefore \sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x) \text {gives two real solutions in the interval }\left[ - \pi, \pi \right]\]
APPEARS IN
संबंधित प्रश्न
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin pi/6)`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate:
`cos{sin^-1(-7/25)}`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos−1 (cos 6).
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
The value of sin `["cos"^-1 (7/25)]` is ____________.