मराठी

Write the Following in the Simplest Form: `Sin^-1{(Sqrt(1+X)+Sqrt(1-x))/2},0<X<1` - Mathematics

Advertisements
Advertisements

प्रश्न

Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`

उत्तर

Let x = cos θ

Now,

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2} = sin^-1  {(sqrt(1+costheta)+sqrt(1-costheta))/2}`

`=sin^-1{(sqrt(2cos^2  theta/2)+sqrt(2sin^2  theta/2))/2}`

`=sin^-1{(cos  theta/2+sin  theta/2)/sqrt2}`

`=sin^-1{1/sqrt2sin  theta/2+1/sqrt2cos  theta/2}`

`=sin^-1{sin(theta/2+pi/4)}`

`=theta/2+pi/4`

`=(cos^-1x)/2+pi/4`

`therefore sin^-1{(sqrt(1+x)+sqrt(1-x))/2}=(cos^-1x)/2+pi/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 7.09 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of sin (cot−1 x).


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


What is the principal value of `sin^-1(-sqrt3/2)?`


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×