Advertisements
Advertisements
प्रश्न
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
उत्तर
Let x = cos θ
Now,
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2} = sin^-1 {(sqrt(1+costheta)+sqrt(1-costheta))/2}`
`=sin^-1{(sqrt(2cos^2 theta/2)+sqrt(2sin^2 theta/2))/2}`
`=sin^-1{(cos theta/2+sin theta/2)/sqrt2}`
`=sin^-1{1/sqrt2sin theta/2+1/sqrt2cos theta/2}`
`=sin^-1{sin(theta/2+pi/4)}`
`=theta/2+pi/4`
`=(cos^-1x)/2+pi/4`
`therefore sin^-1{(sqrt(1+x)+sqrt(1-x))/2}=(cos^-1x)/2+pi/4`
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of sin (cot−1 x).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
What is the principal value of `sin^-1(-sqrt3/2)?`
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
Find the value of `sin^-1(cos((33π)/5))`.