मराठी

Solve `Cos^-1sqrt3x+Cos^-1x=Pi/2` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve `cos^-1sqrt3x+cos^-1x=pi/2`

उत्तर

`cos^-1sqrt3x+cos^-1x=pi/2`

⇒`cos^-1[sqrt3x xx x-sqrt(1-(sqrt3x)^2)sqrt(1-x^2)]=pi/2`       `[becausecos^-1x+cos^-1y=cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2)]`

⇒ `cos^-1[sqrt3x^2-sqrt(1-3x^2)sqrt(1-x^2)]=pi/2`

⇒ `sqrt3x^2=sqrt(1-3x^2)sqrt(1-x^2)=cos  pi/2`

⇒ `sqrt3x^2=sqrt(1-3x^2)sqrt(1-x^2)`

⇒ `3x^4=(1-3x^2)(1-x^2)`

⇒ `3x^4=1-3x^2+3x^4-x^2`

⇒ `4x^2=1`

⇒ `x^2=1/4`

⇒ `x=+-1/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.13 [पृष्ठ ९२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.13 | Q 3 | पृष्ठ ९२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

`sin^-1(sin  pi/6)`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Solve: `cos(sin^-1x)=1/6`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×