मराठी

Solve the Equation `Cos^-1 A/X-cos^-1 B/X=Cos^-1 1/B-cos^-1 1/A` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`

उत्तर

`cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`

⇒ `cos^-1  a/x+cos^-1  1/a=cos^-1  1/b+cos^-1  b/x`

⇒  `cos^-1 [a/x  xx1/a-sqrt(1-(a/x)^2)sqrt(1-(1/a)^2)]=cos^-1[b/x  xx1/b-sqrt(1-(b/x)^2)sqrt(1-(1/b)^2)]`     `[because cos^-1x+cos^-1y=cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2))]`

⇒  `cos^-1[1/x-sqrt(1-a^2/x^2)xxsqrt(1-1/a^2)]=cos^-1[1/x-sqrt(1-b^2/x^2)xxsqrt(1-1/b^2)]`

⇒  `1/x-sqrt(1-a^2/x^2)xxsqrt(1-1/a^2)=1/x-sqrt(1-b^2/x^2)xxsqrt(1-1/b^2`

⇒  `(1-a^2/x^2)(1-1/a^2)=(1-b^2/x^2)(1-1/b^2)`

⇒  `1-1/a^2-a^2/x^2+1/x^2=1-1/b^2-b^2/x^2+1/x^2`

⇒  `(a^2-b^2)/x^2=1/b^2-1/a^2`

⇒  `(a^2-b^2)/x^2=(a^2-b^2)/(a^2b^2)`

⇒  `x^2=a^2b^2`

⇒  `x=ab`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.13 [पृष्ठ ९२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.13 | Q 2 | पृष्ठ ९२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×