मराठी

Evaluate: `Cos(Sin^-1 3/5+Sin^-1 5/13)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`

उत्तर

`cos(sin^-1  3/5+sin^-1  5/13)=cos{sin^-1(3/5sqrt(1-(5/13)^2)+5/13sqrt(1-(3/5)^2))}`

`=cos{sin^-1(3/5xx12/13+5/13xx4/5)}`

`=cos{sin^-1(36/65+4/13)}`

`=cos{sin^-1(56/65)}`

`=cos{cos^-1sqrt(1-(56/65)^2)}`          `[because sin^-1x=cos^-1sqrt(1-x^2)]`

`=cos{cos^-1  33/65}`

`=33/65`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.12 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.12 | Q 1 | पृष्ठ ८९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin2)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cos(tan^-1  24/7)`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of cos−1 (cos 1540°).


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


If tan−1 (cot θ) = 2 θ, then θ =

 


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×