मराठी

If `Sin^-1 (2a)/(1+A^2)+Sin^-1 (2b)/(1+B^2)=2tan^-1x,` Prove That `X=(A+B)/(1-ab).` - Mathematics

Advertisements
Advertisements

प्रश्न

If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`

उत्तर

Let: a = tan z
      b = tan y

Then,

`sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x`

`=>sin^-1  (2tanz)/(1+tan^2z)+sin^-1  (2tany)/(1+tan^2y)=2tan^-1x`

`=>sin^-1(sin2z)+sin^-1(sin2y)=2tan^-1x`       `[becausesin2x=(2tanx)/(1+tan^2x)]`

`=>2z+2y=2tan^-1x`

`=>tan^-1a+tan^-1b=tan^-1x`       `[becausea=tanzandb=tany]`

`=>tan^-1  (a+b)/(1-ab)=tan^-1x`     `[becausetan^-1x+tan^-1y=tan^-1  (x+y)/(1-xy)]`

`=>x=(a+b)/(1-ab)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 5 | पृष्ठ ११५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos−1 (cos 6).


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

If tan−1 3 + tan−1 x = tan−1 8, then x =


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×