Advertisements
Advertisements
प्रश्न
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
उत्तर
\[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\]
\[ \Rightarrow \cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = \cos\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \sin^{- 1} \frac{2}{5} + \cos^{- 1} x = \frac{\pi}{2}\]
\[ \therefore x = \frac{2}{5} \left[ \because \sin^{- 1} y + \cos^{- 1} y = \frac{\pi}{2} \right]\]
\[\]
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the domain of `f(x)=cos^-1x+cosx.`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cos(tan^-1 3/4)`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`tan^-1 2/3=1/2tan^-1 12/5`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
tanx is periodic with period ____________.
The period of the function f(x) = tan3x is ____________.