Advertisements
Advertisements
प्रश्न
`tan^-1 2/3=1/2tan^-1 12/5`
उत्तर
LHS = `tan^-1 2/3`
`=1/2tan^-1{(2xx2/3)/(1-(2/3)^2)}` `[becausetan^-1x=1/2tan^-1{(2x)/(1-x^2)}]`
`=1/2tan^-1{(4/3)/(5/9)}`
`=1/2tan^-1 12/5=`RHS
APPEARS IN
संबंधित प्रश्न
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(sin^-1 7/25)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`tan{cos^-1(-7/25)}`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the value of sin (cot−1 x).
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If tan−1 3 + tan−1 x = tan−1 8, then x =
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If tan−1 (cot θ) = 2 θ, then θ =
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`