Advertisements
Advertisements
प्रश्न
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
उत्तर
LHS = `tan^-1 1/4+tan^-1 2/9`
`=tan^-1((1/4+2/9)/(1-1/4xx2/9))` `[becausetan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))]`
`=tan^-1((17/36)/(34/36))`
`=tan^-1 1/2`
`=1/2cos^-1((1-1/4)/(1+1/4))` `[becausetan^-1x=1/2cos^-1((1-x^2)/(1+x^2))]`
`=1/2cos^-1((3/4)/(5/4))`
`=1/2cos^-1(3/5)`
Now,
`tan^-1 1/2=1/2sin^-1((2/2)/(1+1/4))` `[becausetan^-1x=1/2sin^-1((2x)/(1+x^2))]`
`=1/2sin^-1 (1/(5/4))`
`=1/2sin^-1(4/5)`
APPEARS IN
संबंधित प्रश्न
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin pi/6)`
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate:
`tan{cos^-1(-7/25)}`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`tan^-1 2/3=1/2tan^-1 12/5`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the range of tan−1 x.
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
tanx is periodic with period ____________.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`