मराठी

`Tan^-1 1/4+Tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)` - Mathematics

Advertisements
Advertisements

प्रश्न

`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`

उत्तर

LHS = `tan^-1  1/4+tan^-1  2/9`

`=tan^-1((1/4+2/9)/(1-1/4xx2/9))`     `[becausetan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))]`

`=tan^-1((17/36)/(34/36))`

`=tan^-1  1/2`

`=1/2cos^-1((1-1/4)/(1+1/4))`         `[becausetan^-1x=1/2cos^-1((1-x^2)/(1+x^2))]`

`=1/2cos^-1((3/4)/(5/4))`

`=1/2cos^-1(3/5)`

Now,

`tan^-1  1/2=1/2sin^-1((2/2)/(1+1/4))`     `[becausetan^-1x=1/2sin^-1((2x)/(1+x^2))]`

`=1/2sin^-1 (1/(5/4))`

`=1/2sin^-1(4/5)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 2.02 | पृष्ठ ११५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (7pi)/6)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate:

`tan{cos^-1(-7/25)}`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  2/3=1/2tan^-1  12/5`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the range of tan−1 x.


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


tanx is periodic with period ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×