हिंदी

Tan-114+Tan-129=12cos-132=12sin-1(45) - Mathematics

Advertisements
Advertisements

प्रश्न

tan-1 14+tan-1 29=12cos-1 32=12sin-1(45)

उत्तर

LHS = tan-1 14+tan-1 29

=tan-1(14+291-14×29)     [tan-1x+tan-1y=tan-1(x+y1-xy)]

=tan-1(17363436)

=tan-1 12

=12cos-1(1-141+14)         [tan-1x=12cos-1(1-x21+x2)]

=12cos-1(3454)

=12cos-1(35)

Now,

tan-1 12=12sin-1(221+14)     [tan-1x=12sin-1(2x1+x2)]

=12sin-1(154)

=12sin-1(45)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 2.02 | पृष्ठ ११५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of tan(2tan-1(15))


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Find the domain of definition of f(x)=cos-1(x2-4)


Find the domain of f(x)=cos-1x+cosx.


sin-1(sin 5π6)


Evaluate the following:

cos-1{cos(-π4)}


Evaluate the following:

cos-1(cos12)


Evaluate the following:

tan-1(tan4)


Evaluate the following:

sec-1(sec 7π3)


Write the following in the simplest form:

sin-1{1+x+1-x2},0<x<1


Evaluate the following:

sec(sin-1 1213)


Evaluate the following:

cot(cos-1 35)


Prove the following result

sin(cos-1 35+sin-1 513)=6365


Evaluate:

cot(tan-1a+cot-1a)


If sin-1x+sin-1y=π3  and  cos-1x-cos-1y=π6,  find the values of x and y.


Find the value of tan-1 (xy)-tan-1(x-yx+y)


Evaluate the following:

sin(12cos-1 45)


Evaluate the following:

sin(2tan-1 23)+cos(tan-13)


Solve the following equation for x:

tan-1 14+2tan-1 15+tan-1 16+tan-1 1x=π4


For any a, b, x, y > 0, prove that:

23tan-1(3ab2-a3b3-3a2b)+23tan-1(3xy2-x3y3-3x2y)=tan-1 2αβα2-β2

where α=-ax+by,β=bx+ay


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of cos−1 (cos 1540°).


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of sin−1 (cosπ9)


Show that sin1(2x1x2)=2sin1x


If tan1(3)+cot1x=π2, find x.


Write the value of tan(2tan115)


Write the principal value of cos1(cos680)


Write the value of sin1(sin3π5)


If cos(sin125+cos1x)=0, find the value of x.

 

 If u=cot1tanθtan1tanθ then ,tan(π4u2)=


sin {2cos1(35)}  is equal to

 


cot(π42cot13)= 

 


The domain of  cos1(x24) is

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Write the value of cos1(12)+2sin1(12) .


Find the real solutions of the equation
tan-1x(x+1)+sin-1x2+x+1=π2


The value of sin [cos-1(725)] is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.