Advertisements
Advertisements
प्रश्न
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
उत्तर
(tan−1x)2 + (cot−1x)2 = 5π2/8
`=>(tan^(−1)x+cos^(−1)x)^2−2tan^(−1)xcot^(−1)x=(5π^2)/8`
`⇒(π/2)^2−2tan^(−1)x(π/2−tan^(−1)x)=(5π^2)/8`
`⇒π^2/4−πtan^(−1)x+2(tan^(−1)x)^2=(5π^2)/8`
`⇒2(tan^(−1)x)^2−πtan^(−1)x+π^2/4−(5π^2)/8=0`
`⇒2(tan^(−1)x)^2−πtan^(−1)x−(5π^2+2π^2)/8=0`
`⇒2(tan^(−1)x)2−πtan^(−1)x−(3π^2)/8=0`
Solving the quadratic equation, we get
`⇒tan^(−1)x=(π±sqrt(π^2+4xx2xx(3π^2)/8))/(2xx2)`
`⇒tan^(−1)x=(π±2π)/4`
`⇒tan^(−1)x=(3π)/4 or tan^(−1)x=−π/4 `
`⇒x=tan((3π)/4) or x=tan(−π/4)`
`⇒x=−1`
APPEARS IN
संबंधित प्रश्न
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin2)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cos(tan^-1 3/4)`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the value of sin (cot−1 x).
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of cos−1 (cos 6).
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.