Advertisements
Advertisements
प्रश्न
Evaluate the following:
`sec^-1(sec (2pi)/3)`
उत्तर
We know that
sec-1 (sec θ) = θ, [0, π/2) ∪ (π/2, π]
We have
`sec^-1(sec (2pi)/3)=(2pi)/3`
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cos(tan^-1 24/7)`
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos−1 (cos 1540°).
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value of sin−1 (sin 1550°).
Write the value of cos−1 (cos 6).
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If tan−1 (cot θ) = 2 θ, then θ =
tanx is periodic with period ____________.