हिंदी

If Tan−1 (Cot θ) = 2 θ, Then θ = (A) ± π 3 (B) ± π 4 (C) ± π 6 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If tan−1 (cot θ) = 2 θ, then θ =

 

विकल्प

  • `+-pi/3`

  • `+-pi/4`

  • `+-pi/6`

  • none of these

MCQ

उत्तर

(c) `+-pi/6`

\[\text{We have}, \]
\[ \tan^{- 1} \left( cot\theta \right) = 2\theta\]
\[ \Rightarrow \tan2\theta = cot\theta\]
\[ \Rightarrow \frac{2\tan\theta}{1 - \tan^2 \theta} = \frac{1}{\tan\theta}\]
\[ \Rightarrow 2 \tan^2 \theta = 1 - \tan^2 \theta\]
\[ \Rightarrow 3 \tan^2 \theta = 1\]
\[ \Rightarrow \tan^2 \theta = \frac{1}{3}\]
\[ \Rightarrow \tan\theta = \pm \frac{1}{\sqrt{3}}\]
\[ \therefore \theta = \pm \frac{\pi}{6}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 30 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cosec(cos^-1  3/5)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


`tan^-1  2/3=1/2tan^-1  12/5`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Write the range of tan−1 x.


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


If sin−1 − cos−1 x = `pi/6` , then x = 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


The period of the function f(x) = tan3x is ____________.


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×