Advertisements
Advertisements
प्रश्न
If tan−1 (cot θ) = 2 θ, then θ =
विकल्प
`+-pi/3`
`+-pi/4`
`+-pi/6`
none of these
उत्तर
(c) `+-pi/6`
\[\text{We have}, \]
\[ \tan^{- 1} \left( cot\theta \right) = 2\theta\]
\[ \Rightarrow \tan2\theta = cot\theta\]
\[ \Rightarrow \frac{2\tan\theta}{1 - \tan^2 \theta} = \frac{1}{\tan\theta}\]
\[ \Rightarrow 2 \tan^2 \theta = 1 - \tan^2 \theta\]
\[ \Rightarrow 3 \tan^2 \theta = 1\]
\[ \Rightarrow \tan^2 \theta = \frac{1}{3}\]
\[ \Rightarrow \tan\theta = \pm \frac{1}{\sqrt{3}}\]
\[ \therefore \theta = \pm \frac{\pi}{6}\]
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Write the range of tan−1 x.
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
If sin−1 x − cos−1 x = `pi/6` , then x =
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
The period of the function f(x) = tan3x is ____________.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.