Advertisements
Advertisements
प्रश्न
Evaluate the following:
`tan^-1(tan (6pi)/7)`
उत्तर
We know that
`tan^-1(tantheta)=theta, -pi/2<theta<pi/2`
We have
`tan^-1(tan (6pi)/7)=tan^-1[tan(pi+pi/7)]`
`=tan^-1[tan(-pi/7)]`
`=-pi/7`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(cos^-1 5/13)`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of cos−1 (cos 6).
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
If sin−1 x − cos−1 x = `pi/6` , then x =
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Find the domain of `sec^(-1)(3x-1)`.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`