Advertisements
Advertisements
प्रश्न
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
उत्तर
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
`=>sin{sin^(-1) (1/(sqrt(1+(1+x)^2)))}`
`=cos{cos^(-1)(1/sqrt(1+x^2))} [because cot^(-1)=sin^(-1)1/sqrt(1+x^2) and tan^(-1)x=cos^(-1)(1/sqrt(1+x^2))]`
`⇒1/sqrt(1+(x+1)^2)=1/sqrt(1+x^2)`
`⇒1/sqrt(2+x^2+2x)=1/sqrt(1+x^2)`
`⇒sqrt(1+x2)=sqrt(x^2+2x+2)`
Squaring both sides, we get
⇒1+x2=x2+2x+2
⇒2x+2=1
⇒x=−1/2
APPEARS IN
संबंधित प्रश्न
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
If tan−1 (cot θ) = 2 θ, then θ =
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .