हिंदी

If sin [cot−1 (x+1)] = cos(tan−1x), then find x. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin [cot−1 (x+1)] = cos(tan1x), then find x.

उत्तर

If sin [cot−1 (x+1)] = cos(tan1x), then find x.

`=>sin{sin^(-1) (1/(sqrt(1+(1+x)^2)))}`

`=cos{cos^(-1)(1/sqrt(1+x^2))}  [because cot^(-1)=sin^(-1)1/sqrt(1+x^2) and tan^(-1)x=cos^(-1)(1/sqrt(1+x^2))]`

`⇒1/sqrt(1+(x+1)^2)=1/sqrt(1+x^2)`

`⇒1/sqrt(2+x^2+2x)=1/sqrt(1+x^2)`

`⇒sqrt(1+x2)=sqrt(x^2+2x+2)`

Squaring both sides, we get

1+x2=x2+2x+2

2x+2=1

x=1/2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


`tan^-1x+2cot^-1x=(2x)/3`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


If tan−1 (cot θ) = 2 θ, then θ =

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×