Advertisements
Advertisements
प्रश्न
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
उत्तर
\[\cos^{- 1} \left( \cos\frac{5\pi}{4} \right) \neq \frac{5\pi}{4}\]as
\[\frac{5\pi}{4}\] does not lie between 0 and π
We have
\[\cos^{- 1} \left( \cos\frac{5\pi}{4} \right) = \cos^{- 1} \left\{ \cos\left( 2\pi - \frac{3\pi}{4} \right) \right\}\]
\[ = \cos^{- 1} \left\{ \cos\left( \frac{3\pi}{4} \right) \right\}\]
\[ = \frac{3\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`cos(tan^-1 24/7)`
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of cos−1 (cos 6).
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the principal value of `sin^-1(-1/2)`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the domain of `sec^(-1)(3x-1)`.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The value of sin `["cos"^-1 (7/25)]` is ____________.
Find the value of `sin^-1(cos((33π)/5))`.