Advertisements
Advertisements
प्रश्न
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
विकल्प
`1/sqrt2`
`1/sqrt3`
`1/(2sqrt2)`
`1/(3sqrt3)`
उत्तर
(c) `1/(2sqrt2)`
Let \[\sin^{- 1} \frac{\sqrt{63}}{8} = y\]
Then,
\[\sin{y} = \frac{\sqrt{63}}{8}\]
\[\cos{y} = \sqrt{1 - \sin^2 y} = \sqrt{1 - \frac{63}{64}} = \frac{1}{8}\]
Now, we have
\[\sin\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right) = \sin\left( \frac{1}{4}y \right)\]
\[ = \sqrt{\frac{1 - \cos\frac{y}{2}}{2}} \left[ \because \cos2x = 1 - 2 \sin^2 x \right]\]
\[ = \sqrt{\frac{1 - \sqrt{\frac{1 + \cos{y}}{2}}}{2}} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ = \sqrt{\frac{1 - \sqrt{\frac{1 + \frac{1}{8}}{2}}}{2}}\]
\[ = \sqrt{\frac{1 - \sqrt{\frac{9}{16}}}{2}}\]
\[ = \sqrt{\frac{1 - \frac{3}{4}}{2}}\]
\[ = \sqrt{\frac{1}{8}}\]
\[ = \frac{1}{2\sqrt{2}}\]
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
`4sin^-1x=pi-cos^-1x`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the value of sin (cot−1 x).
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If sin−1 x − cos−1 x = `pi/6` , then x =
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Find the domain of `sec^(-1) x-tan^(-1)x`
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
tanx is periodic with period ____________.