हिंदी

The Value of Sin ( 1 4 Sin − 1 √ 63 8 ) is (A) 1 √ 2 (B) 1 √ 3 (C) 1 2 √ 2 (D) 1 3 √ 3 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 

विकल्प

  • `1/sqrt2`

  • `1/sqrt3`

  • `1/(2sqrt2)`

  • `1/(3sqrt3)`

MCQ

उत्तर

(c) `1/(2sqrt2)`

Let \[\sin^{- 1} \frac{\sqrt{63}}{8} = y\]

Then,
\[\sin{y} = \frac{\sqrt{63}}{8}\]
\[\cos{y} = \sqrt{1 - \sin^2 y} = \sqrt{1 - \frac{63}{64}} = \frac{1}{8}\]
Now, we have
\[\sin\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right) = \sin\left( \frac{1}{4}y \right)\]
\[ = \sqrt{\frac{1 - \cos\frac{y}{2}}{2}} \left[ \because \cos2x = 1 - 2 \sin^2 x \right]\]
\[ = \sqrt{\frac{1 - \sqrt{\frac{1 + \cos{y}}{2}}}{2}} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ = \sqrt{\frac{1 - \sqrt{\frac{1 + \frac{1}{8}}{2}}}{2}}\]
\[ = \sqrt{\frac{1 - \sqrt{\frac{9}{16}}}{2}}\]
\[ = \sqrt{\frac{1 - \frac{3}{4}}{2}}\]
\[ = \sqrt{\frac{1}{8}}\]
\[ = \frac{1}{2\sqrt{2}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 28 | पृष्ठ १२१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


`4sin^-1x=pi-cos^-1x`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the value of sin (cot−1 x).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If sin−1 − cos−1 x = `pi/6` , then x = 


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×