हिंदी

If 2 Tan−1 (Cos θ) = Tan−1 (2 Cosec θ), (θ ≠ 0), Then Find the Value of θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.

उत्तर

\[2 \tan^{- 1} \left( \cos\theta \right) = \tan^{- 1} \left( 2cosec\theta \right)\]

\[ \Rightarrow \tan^{- 1} \left( \frac{2\cos\theta}{1 - \cos^2 \theta} \right) = \tan^{- 1} \left( 2cosec\theta \right) \left[ 2 \tan^{- 1} x = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \right]\]

\[ \Rightarrow \frac{2\cos\theta}{1 - \cos^2 \theta} = 2cosec\theta\]

\[ \Rightarrow \frac{\cos\theta}{1 - \cos^2 \theta} = \frac{1}{\sin\theta}\]

\[ \Rightarrow 1 - \cos^2 \theta = \sin\theta\cos\theta\]

\[ \Rightarrow \sec^2 \theta - 1 = \tan\theta \left[ \text { Dividing both sides by } \cos^2 \theta \right]\]

\[ \Rightarrow 1 + \tan^2 \theta - 1 = \tan\theta\]

\[ \Rightarrow \tan^2 \theta - \tan\theta = 0\]

\[ \Rightarrow \tan\theta\left( \tan\theta - 1 \right) = 0\]

\[ \Rightarrow \tan\theta = 0 or \tan\theta - 1 = 0\]

\[ \Rightarrow \tan\theta = 0 or \tan\theta = 1\]

\[ \Rightarrow \theta = 0 or \theta = \frac{\pi}{4}\]

It is given that θ ≠ 0

\[\therefore \theta = \frac{\pi}{4}\]

Thus, the value of θ is \[\frac{\pi}{4}\] .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (7pi)/6)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate:

`cos{sin^-1(-7/25)}`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Write the value of sin1 (sin 1550°).


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If tan−1 3 + tan−1 x = tan−1 8, then x =


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find the domain of `sec^(-1)(3x-1)`.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×