Advertisements
Advertisements
प्रश्न
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
उत्तर
\[2 \tan^{- 1} \left( \cos\theta \right) = \tan^{- 1} \left( 2cosec\theta \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2\cos\theta}{1 - \cos^2 \theta} \right) = \tan^{- 1} \left( 2cosec\theta \right) \left[ 2 \tan^{- 1} x = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \right]\]
\[ \Rightarrow \frac{2\cos\theta}{1 - \cos^2 \theta} = 2cosec\theta\]
\[ \Rightarrow \frac{\cos\theta}{1 - \cos^2 \theta} = \frac{1}{\sin\theta}\]
\[ \Rightarrow 1 - \cos^2 \theta = \sin\theta\cos\theta\]
\[ \Rightarrow \sec^2 \theta - 1 = \tan\theta \left[ \text { Dividing both sides by } \cos^2 \theta \right]\]
\[ \Rightarrow 1 + \tan^2 \theta - 1 = \tan\theta\]
\[ \Rightarrow \tan^2 \theta - \tan\theta = 0\]
\[ \Rightarrow \tan\theta\left( \tan\theta - 1 \right) = 0\]
\[ \Rightarrow \tan\theta = 0 or \tan\theta - 1 = 0\]
\[ \Rightarrow \tan\theta = 0 or \tan\theta = 1\]
\[ \Rightarrow \theta = 0 or \theta = \frac{\pi}{4}\]
It is given that θ ≠ 0
\[\therefore \theta = \frac{\pi}{4}\]
Thus, the value of θ is \[\frac{\pi}{4}\] .
APPEARS IN
संबंधित प्रश्न
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate:
`cos{sin^-1(-7/25)}`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Write the value of sin−1 (sin 1550°).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If tan−1 3 + tan−1 x = tan−1 8, then x =
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the domain of `sec^(-1)(3x-1)`.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`