हिंदी

Write the Value of Cos−1 (Cos 350°) − Sin−1 (Sin 350°) - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of cos1 (cos 350°) − sin−1 (sin 350°)

उत्तर

\[\cos^{- 1} \left( \cos {350}^\circ \right) - \sin^{- 1} \left( \sin {350}^\circ \right)\]
\[ = \cos^{- 1} \left\{ \cos\left( {360}^\circ - {350}^\circ \right) \right\} - \sin^{- 1} \left\{ \sin\left( {360}^\circ - {350}^\circ \right) \right\} \left[ \because \sin\left( {360}^\circ - x \right) = - \sin{x} , \cos\left( {360}^\circ - x \right) = \cos{x} \right]\]
\[ \]
\[ = \cos^{- 1} \left\{ \cos\left( {10}^\circ \right) \right\} - \sin^{- 1} \left\{ \sin\left( - {10}^\circ \right) \right\}\]
\[ = {10}^\circ - \left( - {10}^\circ \right)\]
\[ = {20}^\circ \]
\[\]

∴ \[\cos^{- 1} \left( \cos {350}^\circ \right) - \sin^{- 1} \left( \sin {350}^\circ \right) = {20}^\circ\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 21 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


`sin^-1(sin  (7pi)/6)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×