हिंदी

Write the Value of Cos2 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]

उत्तर

\[\text{Let }y = \cos^{- 1} \left( \frac{3}{5} \right)\]
\[ \Rightarrow \cos{y} = \frac{3}{5}\]

Now,

\[\cos^2 \left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right) = \cos^2 \left( \frac{1}{2}y \right)\]
\[ = \frac{\cos{y} + 1}{2} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ = \frac{\frac{3}{5} + 1}{2}\]
\[ = \frac{\frac{8}{5}}{2}\]
\[ = \frac{4}{5}\]

∴ \[\cos^2 \left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right) = \frac{4}{5}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 22 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin  pi/6)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of cos−1 (cos 1540°).


Write the value of sin1 (sin 1550°).


Write the value of cos−1 (cos 6).


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×