हिंदी

The Value of Sin ( 2 ( Tan − 1 0 . 75 ) ) is Equal to (A) 0.75 (B) 1.5 (C) 0.96 (D) Sin − 1 1.5 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 

विकल्प

  • 0.75

  • 1.5

  • 0.96

  • `sin^-1 1.5`

MCQ

उत्तर

\[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right) = \sin\left( 2 \tan^{- 1} 0 . 75 \right)\]
\[ = \sin\left( \sin^{- 1} \frac{2 \times 0 . 75}{1 + \left( 0 . 75 \right)^2} \right)\]
\[ = \sin\left( \sin^{- 1} 0 . 96 \right)\]
\[ = 0 . 96\]

Hence, the correct answer is option (c).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 32 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (17pi)/8)`


`sin^-1(sin2)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find the domain of `sec^(-1)(3x-1)`.


Find the domain of `sec^(-1) x-tan^(-1)x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×