Advertisements
Advertisements
प्रश्न
The set of values of `\text(cosec)^-1(sqrt3/2)`
उत्तर
The value of
`\text(cosec)^-1(sqrt3/2)` is undefined as it is outside the range i.e., R – (–1, 1) .
APPEARS IN
संबंधित प्रश्न
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin pi/6)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`sin(sin^-1 1/5+cos^-1x)=1`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`