हिंदी

For Any A, B, X, Y > 0, Prove That: `2/3tan^-1((3ab^2-a^3)/(B^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(Y^3-3x^2y))=Tan^-1 (2alphabeta)/(Alpha^2-beta^2)` `Where Alpha =-ax+By, Beta=Bx+Ay` - Mathematics

Advertisements
Advertisements

प्रश्न

For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`

उत्तर

Let `a = btan m  and  x = ytan  n`

Then,

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=2/3tan^-1((3b^3tanm-b^3tan^3m)/(b^3-3b^3tan^2m))+2/3tan^-1((3y^3tann-y^3tan^3n)/(y^3-3y^3tan^2n))`

`=2/3tan^-1((3tanm-tan^3m)/(1-3tan^2m))+2/3tan^-1((3tann-tan^3n)/(1-3tan^2n))`

`=2/3tan^-1(tan3m)+2/3tan^-1(tan3n)`      `[because tan3x=(3tanx-tan^3x)/(1-3tan^2x)]`

`=2/3(3m)+2/3(3n)`

`=2m+2n`

`=2(tan^-1  a/b+tan^-1  x/y)`       `[because a=btanm, x=ytann]`

`=2tan^-1((a/b+x/y)/(1-a/b x/y))`

`=2tan^-1((ay+bx)/(by-ax))`

`=tan^-1{(2(ay+bx)/(by-ax))/(1-((ay+bx)/(by-ax))^2)}`

`=tan^-1{(2(ay+bx)(by-ax))/((by-ax)^2-(ay+bx)^2)}`

`=tan^-1{(2alphabeta)/(alpha^2-beta^2)}`      `[becausealpha=ay+bxandalpha=by-ax]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 11 | पृष्ठ ११६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


Find the domain of `f(x)=cos^-1x+cosx.`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate the following:

`cot(cos^-1  3/5)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×