Advertisements
Advertisements
प्रश्न
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
उत्तर
Let `a = btan m and x = ytan n`
Then,
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=2/3tan^-1((3b^3tanm-b^3tan^3m)/(b^3-3b^3tan^2m))+2/3tan^-1((3y^3tann-y^3tan^3n)/(y^3-3y^3tan^2n))`
`=2/3tan^-1((3tanm-tan^3m)/(1-3tan^2m))+2/3tan^-1((3tann-tan^3n)/(1-3tan^2n))`
`=2/3tan^-1(tan3m)+2/3tan^-1(tan3n)` `[because tan3x=(3tanx-tan^3x)/(1-3tan^2x)]`
`=2/3(3m)+2/3(3n)`
`=2m+2n`
`=2(tan^-1 a/b+tan^-1 x/y)` `[because a=btanm, x=ytann]`
`=2tan^-1((a/b+x/y)/(1-a/b x/y))`
`=2tan^-1((ay+bx)/(by-ax))`
`=tan^-1{(2(ay+bx)/(by-ax))/(1-((ay+bx)/(by-ax))^2)}`
`=tan^-1{(2(ay+bx)(by-ax))/((by-ax)^2-(ay+bx)^2)}`
`=tan^-1{(2alphabeta)/(alpha^2-beta^2)}` `[becausealpha=ay+bxandalpha=by-ax]`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Find the domain of `f(x)=cos^-1x+cosx.`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate the following:
`cot(cos^-1 3/5)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the domain of `sec^(-1) x-tan^(-1)x`
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
tanx is periodic with period ____________.