हिंदी

Prove That: `Tan^-1 (2ab)/(A^2-b^2)+Tan^-1 (2xy)/(X^2-y^2)=Tan^-1 (2alphabeta)/(Alpha^2-beta^2),` Where `Alpha=Ax-by And Beta=Ay+Bx.` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`

उत्तर

We know

`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy)),xy>1`

`thereforetan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1(((2ab)/(a^2-b^2)+(2xy)/(x^2-y^2))/(1-(2ab)/(a^2-b^2)  (2xy)/(x^2-y^2)))`

`=tan^-1(((2(abx^2-aby^2+xya^2-xyb^2))/((a^2-b^2)(x^2-y^2)))/((a^2x^2-a^2y^2-x^2b^2+y^2b^2-4abxy)/((a^2-b^2)(x^2-y^2))))`

`=tan^-1((2(abx^2-aby^2+xya^2-xyb^2))/(a^2x^2-a^2y^2-x^2b^2+y^2b^2-2abxy))`

`=tan^-1((2(ax-by)(ay+bx))/((ax-by)^2-(ay+bx)^2))`

`=tan^-1((2alphabeta)/(alpha^2-beta^2))`    `[because alpha=ax-by  and  beta = ay+bx]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 10 | पृष्ठ ११६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`tan^-1  2/3=1/2tan^-1  12/5`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


If tan−1 (cot θ) = 2 θ, then θ =

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×