हिंदी

If Tan − 1 ( √ 3 ) + Cot − 1 X = π 2 , Find X. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.

उत्तर

We know that
 \[\tan^{- 1} x + \cot^{- 1} x = \frac{\pi}{2}\]
We have
\[\tan^{- 1} \left( \sqrt{3} \right) + \cot^{- 1} x = \frac{\pi}{2}\]
\[ \Rightarrow \tan^{- 1} \left( \sqrt{3} \right) = \frac{\pi}{2} - \cot^{- 1} x\]
\[ \Rightarrow \tan^{- 1} \left( \sqrt{3} \right) = \tan^{- 1} x\]
\[ \Rightarrow x = \sqrt{3}\]
∴ \[x = \sqrt{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 33 | पृष्ठ ११८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


If sin−1 − cos−1 x = `pi/6` , then x = 


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×