Advertisements
Advertisements
प्रश्न
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
उत्तर
Let x = cos θ
Now,
`sin{2tan^-1sqrt((1-x)/(1+x))}=sin{2tan^-1sqrt((1-costheta)/(1+costheta))}`
`=sin{2tan^-1sqrt((2sin^2 theta/2)/(2cos^2 theta/2))}`
`=sin{2tan^-1(tan theta/2)}`
= sin θ
= sin (cos-1 x)
`=sin(sin^-1(sqrt(1-x^2)))`
`=sqrt(1-x^2)`
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin3)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`sin(sin^-1 1/5+cos^-1x)=1`
`tan^-1x+2cot^-1x=(2x)/3`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the range of tan−1 x.
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
The value of sin `["cos"^-1 (7/25)]` is ____________.