Advertisements
Advertisements
प्रश्न
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
उत्तर
We have
\[\tan^{- 1} \left\{ \tan\left( \frac{15\pi}{4} \right) \right\} = \tan^{- 1} \left\{ \tan\left( 4\pi - \frac{\pi}{4} \right) \right\}\]
\[ \tan^{- 1} \left\{ - \tan\left( \frac{\pi}{4} \right) \right\} \left[ \because \tan\left( 4\pi - x \right) = - \tan{x} \right]\]
\[ = \tan^{- 1} \left\{ \tan\left( - \frac{\pi}{4} \right) \right\} \]
\[ = - \frac{\pi}{4} \left[ \because \tan^{- 1} \left( \tan{x} \right) = x \right] \]
∴ \[\tan^{- 1} \left\{ \tan\left( \frac{15\pi}{4} \right) \right\} = - \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate:
`cot{sec^-1(-13/5)}`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`tan^-1 2/3=1/2tan^-1 12/5`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the range of tan−1 x.
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
The value of sin `["cos"^-1 (7/25)]` is ____________.