हिंदी

2 Tan−1 {Cosec (Tan−1 X) − Tan (Cot−1 X)} is Equal to (A) Cot−1 X (B) Cot−1 1 X (C) Tan−1 X (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to

विकल्प

  • cot−1 x

  • cot−1`1/x`

  • tan−1 x

  • none of these

MCQ

उत्तर

(c) tan−1 x
Let `tan^-1x=y`

So, `x=tany`

\[\therefore 2 \tan^{- 1} \left\{ cosec\left( \tan^{- 1} x \right) - \tan\left( co t^{- 1} x \right) \right\} = 2 \tan^{- 1} \left\{ cosec\left( \tan^{- 1} x \right) - \tan\left( \tan^{- 1} \frac{1}{x} \right) \right\} \]
\[ = 2 \tan^{- 1} \left\{ cosec\left( \tan^{- 1} x \right) - \frac{1}{x} \right\}\]
\[ = 2 \tan^{- 1} \left\{ cosec {y} - \frac{1}{\tan{y}} \right\}\]
\[ = 2 \tan^{- 1} \left\{ \frac{1 - \cos{y}}{\sin{y}} \right\}\]
\[ = 2 \tan^{- 1} \left\{ \frac{2 \sin^2 \frac{y}{2}}{\sin{y}} \right\} \]
\[ = 2 \tan^{- 1} \left\{ \frac{2 \sin^2 \frac{y}{2}}{2\sin\frac{y}{2}\cos\frac{y}{2}} \right\}\]
\[ = 2 \tan^{- 1} \left\{ \tan\frac{y}{2} \right\}\]
\[ = y\]
\[ = \tan^{- 1} x\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 3 | पृष्ठ १२०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin  pi/6)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of cos−1 (cos 6).


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


tanx is periodic with period ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×