Advertisements
Advertisements
प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
उत्तर
`cos^-1( x/a) +cos^-1 (y/b)=alpha`
`cos^-1(x/a) =alpha-cos^-1 (y/b)`
`=>cos {cos^-1 (x/a)}=cos{alpha-cos^-1 (y/b)}`
`=>x/a=cos alpha cos{cos^-1 (y/b)}+sinalpha sin{cos^-1(y/b)}`
`=>x/a=y/b cos alpha+sin alpha sqrt(1-(y/b)^2)`
`=>x/a - y/b cos alpha =sin alpha sqrt(1-(y/b)^2)`
Squaring both sides, we get
`(x/a - y/b cos alpha)^2={sin alpha sqrt(1-(y/b)^2)}^2`
`(x/a)^2+(y/b)^2cos^2 alpha- (2xy)/(ab) cos alpha=sin^2 alpha- sin^2 alpha(y/b)^2`
`(x/a)^2+(y/b)^2cos^2 alpha+sin^2 alpha(y/b)^2-(2xy)/(ab) cos alpha=sin^2 alpha`
`(x/a)^2+(y/b)^2(cos^2 alpha+sin^2 alpha)-(2xy)/(ab) cos alpha=sin^2 alpha`
`=>(x/a)^2-(2xy)/(ab) cos alpha+(y/b)^2=sin^2 alpha`
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of sin−1 (sin 1550°).
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.