Advertisements
Advertisements
प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
उत्तर
`cos^-1( x/a) +cos^-1 (y/b)=alpha`
`cos^-1(x/a) =alpha-cos^-1 (y/b)`
`=>cos {cos^-1 (x/a)}=cos{alpha-cos^-1 (y/b)}`
`=>x/a=cos alpha cos{cos^-1 (y/b)}+sinalpha sin{cos^-1(y/b)}`
`=>x/a=y/b cos alpha+sin alpha sqrt(1-(y/b)^2)`
`=>x/a - y/b cos alpha =sin alpha sqrt(1-(y/b)^2)`
Squaring both sides, we get
`(x/a - y/b cos alpha)^2={sin alpha sqrt(1-(y/b)^2)}^2`
`(x/a)^2+(y/b)^2cos^2 alpha- (2xy)/(ab) cos alpha=sin^2 alpha- sin^2 alpha(y/b)^2`
`(x/a)^2+(y/b)^2cos^2 alpha+sin^2 alpha(y/b)^2-(2xy)/(ab) cos alpha=sin^2 alpha`
`(x/a)^2+(y/b)^2(cos^2 alpha+sin^2 alpha)-(2xy)/(ab) cos alpha=sin^2 alpha`
`=>(x/a)^2-(2xy)/(ab) cos alpha+(y/b)^2=sin^2 alpha`
APPEARS IN
संबंधित प्रश्न
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sin(sin^-1 7/25)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cot(tan^-1a+cot^-1a)`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If 4 cos−1 x + sin−1 x = π, then the value of x is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`