Advertisements
Advertisements
प्रश्न
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
उत्तर
\[y = \sin(\sin x)\]
\[\frac{dy}{dx} = \cos(\sin x) . \cos x\]
\[\frac{d^2 y}{d x^2} = \cos(\sin x) . ( - \sin x) + \cos x . { - \sin(\sin x)} . \cos x = - \sin x . \cos(\sin x) - y \cos^2 x\]
\[\text { Now,} \]
\[\frac{d^2 y}{d x^2} + \tan x . \frac{dy}{dx} + y \cos^2 x\]
\[ = - \sin x . \cos(\sin x) - y \cos^2 x + \frac{\sin x}{\cos x} . \cos(\sin x) . \cos x + y \cos^2 x\]
\[ = - \sin x . \cos(\sin x) - y \cos^2 x + \sin x . \cos(\sin x) + y \cos^2 x\]
\[ = 0 .\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
`sin^-1(sin12)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`sec(sin^-1 12/13)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the range of tan−1 x.
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If sin−1 x − cos−1 x = `pi/6` , then x =
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If \[\cos^{- 1} x > \sin^{- 1} x\], then
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Find the value of `sin^-1(cos((33π)/5))`.