मराठी

If Y = Sin (Sin X), Prove that D 2 Y D X 2 + Tan X D Y D X + Y Cos 2 X = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]

उत्तर

\[y = \sin(\sin x)\]

\[\frac{dy}{dx} = \cos(\sin x) . \cos x\]

\[\frac{d^2 y}{d x^2} = \cos(\sin x) . ( - \sin x) + \cos x . { - \sin(\sin x)} . \cos x = - \sin x . \cos(\sin x) - y \cos^2 x\]

\[\text { Now,} \]

\[\frac{d^2 y}{d x^2} + \tan x . \frac{dy}{dx} + y \cos^2 x\]

\[ = - \sin x . \cos(\sin x) - y \cos^2 x + \frac{\sin x}{\cos x} . \cos(\sin x) . \cos x + y \cos^2 x\]

\[ = - \sin x . \cos(\sin x) - y \cos^2 x + \sin x . \cos(\sin x) + y \cos^2 x\]

\[ = 0 .\]

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (March) All India Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Evaluate the following:

`sec(sin^-1  12/13)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the range of tan−1 x.


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If sin−1 − cos−1 x = `pi/6` , then x = 


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If \[\cos^{- 1} x > \sin^{- 1} x\], then


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×