Advertisements
Advertisements
प्रश्न
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
उत्तर
`cot(sin^-1 3/4+sec^-1 4/3)`
`=cot(sin^-1 3/4 + cos^-1 3/4)` `[thereforesec^-1x=cos^-1 1/x]`
`=cot(pi/2)` `[thereforesin^-1x+cos^-1x=pi/2]`
= 0
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin pi/6)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
`4sin^-1x=pi-cos^-1x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the range of tan−1 x.
Write the value of sin−1 (sin 1550°).
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`