मराठी

Prove That: `Cos^-1 4/5+Cos^-1 12/13=Cos^-1 33/65` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`

उत्तर

LHS = `cos^-1  4/5+cos^-1  12/13`

`=cos^-1[4/5xx12/13-sqrt(1-(4/5)^2)sqrt(1-(12/13)^2)]`      `[becausecos^-1x+cos^-1y=cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2)]`

`=cos^-1[48/65-3/5xx5/13]`

`=cos^-1((48-15)/65)`

`=cos^-1  33/65=` RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.13 [पृष्ठ ९२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.13 | Q 4 | पृष्ठ ९२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write the value of `tan(2tan^(-1)(1/5))`


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate:

`cot(tan^-1a+cot^-1a)`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of sin1 (sin 1550°).


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If tan−1 3 + tan−1 x = tan−1 8, then x =


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×