मराठी

Write the Value of Cos\[\Left( 2 \Sin^{- 1} \Frac{1}{3} \Right)\] - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]

उत्तर

Let \[y = \sin^{- 1} \frac{1}{3}\]

Then, \[\sin{y} = \frac{1}{3}\]

Now,

 \[\cos{y} = \sqrt{1 - \sin^2 y}\]

\[\Rightarrow \cos{y} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}\]

\[\cos\left( 2 \sin^{- 1} \frac{1}{3} \right) = \cos(2y)\]
\[ = \cos^2 y - \sin^2 y \left[ \because \cos 2x = \cos^2 x - \sin^2 x \right]\]
\[ = \left( \frac{2\sqrt{2}}{3} \right)^2 - \left( \frac{1}{3} \right)^2 \]
\[ = \frac{8}{9} - \frac{1}{9}\]
\[ = \frac{7}{9}\]

∴ \[\cos\left( 2 \sin^{- 1} \frac{1}{3} \right) = \frac{7}{9}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 15 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x:sin1x+sin1(1x)=cos1x


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


`sin^-1(sin12)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Evaluate the following:

`sin(tan^-1  24/7)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`tan^-1  2/3=1/2tan^-1  12/5`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin (cot−1 x).


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of cos−1 (cos 6).


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


What is the principal value of `sin^-1(-sqrt3/2)?`


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×