Advertisements
Advertisements
प्रश्न
Evaluate the following:
`cos^-1(cos12)`
उत्तर
We know
`cos^-1(costheta)=thetaif 0<=theta<=pi`
We have
`cos^-1(cos12)=cos^-1{cos(4pi-12)}`
= 4π - 12
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin12)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate:
`tan{cos^-1(-7/25)}`
`sin(sin^-1 1/5+cos^-1x)=1`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`tan^-1 2/3=1/2tan^-1 12/5`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the range of tan−1 x.
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`