Advertisements
Advertisements
प्रश्न
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
उत्तर
\[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right) = \cos^{- 1} \left[ \cos\left( 4\pi + \frac{2\pi}{3} \right) \right]\]
\[ = \cos^{- 1} \left( \cos\frac{2\pi}{3} \right)\]
\[ = \frac{2\pi}{3}\]
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If tan−1 3 + tan−1 x = tan−1 8, then x =
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the domain of `sec^(-1)(3x-1)`.