Advertisements
Advertisements
प्रश्न
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
पर्याय
7
6
5
none of these
उत्तर
(a) 7
Let \[2 \cot^{- 1} 3 = y\]
Then,
\[\cot\frac{y}{2} = 3\]
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) = \cot\left( \frac{\pi}{4} - y \right)\]
\[ = \frac{\cot\frac{\pi}{4}\cot{y} + 1}{\cot{y} - \cot\frac{\pi}{4}}\]
\[ = \frac{\cot{y} + 1}{\cot{y} - 1} \]
\[ = \frac{\frac{\cot^2 \frac{y}{2} - 1}{2\cot\frac{y}{2}} + 1}{\frac{\cot^2 \frac{y}{2} - 1}{2\cot\frac{y}{2}} - 1}\]
\[ = \frac{\cot^2 \frac{y}{2} + 2\cot\frac{y}{2} - 1}{\cot^2 \frac{y}{2} - 2\cot\frac{y}{2} - 1}\]
\[ = \frac{9 + 6 - 1}{9 - 6 - 1}\]
\[ = 7\]
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
`tan^-1 2/3=1/2tan^-1 12/5`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of sin (cot−1 x).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of cos−1 (cos 6).
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If tan−1 3 + tan−1 x = tan−1 8, then x =
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .