Advertisements
Advertisements
प्रश्न
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
उत्तर
`cos^-1x+sin^-1 (x/2) = π/6`
`(π/2 − sin^-1x) + sin^-1(x/2) = π/6`
`π/2 − π/6 = sin^-1x−sin^-1(x/2)`
`sin^-1x−sin^-1(x/2) = π/3 = sin^-1(sqrt3/2)`
`sin^-1x = sin^-1(sqrt3/2) + sin^-1(x/2)`
`sin^-1(x) = sin^-1(sqrt3/2 sqrt(1−x^2/4) + x/2 sqrt(1 - 3/4)) ...[sin^-1 x + sin^-1y = sin^-1 [xsqrt(1 - y^2) + ysqrt(1 - x^2)].`
`sin^-1(x) = sin^-1[(sqrt3/2 sqrt(4−x^2)/2) + x/2 . 1/2]`
`x = (sqrt3 sqrt(4 - x^2))/4 + x/4`
`x - x/4 = (sqrt3 sqrt(4 - x^2))/4`
`(3x)/cancel4 = (sqrt3 sqrt(4 - x^2))/cancel4`
Squaring both the sides
9x2 = 3(4 − x2)
3x2 = 4 - x2
3x2 + x2 = 4
4x2 = 4
x2 = 1
x = ± 1.
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
`sin^-1(sin12)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`tan{cos^-1(-7/25)}`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
`sin^-1x=pi/6+cos^-1x`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If 4 cos−1 x + sin−1 x = π, then the value of x is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.