मराठी

Sin [ Cot − 1 { Tan ( Cos − 1 X ) } ] is Equal to (A) X (B) √ 1 − X 2 (C) 1 X (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

पर्याय

  • x

  • `sqrt(1-x^2`

  • `1/x`

  • none of these

     
MCQ

उत्तर

(a) x
Let \[\cos^{- 1} x = y\]
Then, 

\[\sin\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right] = \sin\left[ \cot^{- 1} \left\{ \tan y \right\} \right]\]
\[ = \sin\left[ \cot^{- 1} \left\{ \cot \left( \frac{\pi}{2} - y \right) \right\} \right] \]
\[ = \sin\left( \frac{\pi}{2} - y \right)\]
\[ = \cos{y} \]
\[ = x \left[ \because \cos{y} = x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 7 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`tan{cos^-1(-7/25)}`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×