मराठी

If α = Tan − 1 ( √ 3 X 2 Y − X ) , β = Tan − 1 ( 2 X − Y √ 3 Y ) , Then α − β = (A) π 6 (B) π 3 (C) π 2 (D) − π 3 - Mathematics

Advertisements
Advertisements

प्रश्न

If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =

पर्याय

  • `pi/6`

  • `pi/3`

  • `pi/2`

  • `-pi/3`

MCQ

उत्तर

(a) `pi/6`

We have
α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right)\]
\[\text{ Now }, \alpha - \beta = \tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right) - \tan^{- 1} \frac{2x - y}{\sqrt{3}y}\]
\[ = \tan^{- 1} \left( \frac{\frac{\sqrt{3}x}{2y - x} - \frac{2x - y}{\sqrt{3}y}}{1 + \frac{\sqrt{3}x}{2y - x} \times \frac{2x - y}{\sqrt{3}y}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3xy - 4xy + 2 y^2 + 2 x^2 - xy}{\sqrt{3}y\left( 2y - x \right)}}{\frac{\sqrt{3}y\left( 2y - x \right) + \sqrt{3}x\left( 2x - y \right)}{\sqrt{3}y\left( 2y - x \right)}} \right)\]
\[ = \tan^{- 1} \left( \frac{3xy - 4xy + 2 y^2 + 2 x^2 - xy}{2\sqrt{3} y^2 - \sqrt{3}xy + 2\sqrt{3} x^2 - \sqrt{3}xy} \right)\]
\[ = \tan^{- 1} \left( \frac{2 y^2 + 2 x^2 - 2xy}{2\sqrt{3} y^2 + 2\sqrt{3} x^2 - 2\sqrt{3}xy} \right)\]
\[ = \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 14 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x:sin1x+sin1(1x)=cos1x


 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the range of tan−1 x.


Write the value of cos−1 (cos 1540°).


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×