Advertisements
Advertisements
प्रश्न
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
पर्याय
`pi/6`
`pi/3`
`pi/2`
`-pi/3`
उत्तर
(a) `pi/6`
We have
α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right)\]
\[\text{ Now }, \alpha - \beta = \tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right) - \tan^{- 1} \frac{2x - y}{\sqrt{3}y}\]
\[ = \tan^{- 1} \left( \frac{\frac{\sqrt{3}x}{2y - x} - \frac{2x - y}{\sqrt{3}y}}{1 + \frac{\sqrt{3}x}{2y - x} \times \frac{2x - y}{\sqrt{3}y}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3xy - 4xy + 2 y^2 + 2 x^2 - xy}{\sqrt{3}y\left( 2y - x \right)}}{\frac{\sqrt{3}y\left( 2y - x \right) + \sqrt{3}x\left( 2x - y \right)}{\sqrt{3}y\left( 2y - x \right)}} \right)\]
\[ = \tan^{- 1} \left( \frac{3xy - 4xy + 2 y^2 + 2 x^2 - xy}{2\sqrt{3} y^2 - \sqrt{3}xy + 2\sqrt{3} x^2 - \sqrt{3}xy} \right)\]
\[ = \tan^{- 1} \left( \frac{2 y^2 + 2 x^2 - 2xy}{2\sqrt{3} y^2 + 2\sqrt{3} x^2 - 2\sqrt{3}xy} \right)\]
\[ = \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6}\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the range of tan−1 x.
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
Find the value of `sin^-1(cos((33π)/5))`.