Advertisements
Advertisements
प्रश्न
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
उत्तर
We know
`cos^-1x+cos^-1y=cos^-1[xy-sqrt(1-x^2)sqrt(1-y^2)]`
Now,
`cos^-1 x/2+cos^-1 y/3=alpha,`
⇒ `cos^-1[x/2 y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)]=alpha`
⇒ `x/2 y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)=cos alpha`
⇒ `xy-sqrt(4-x^2)sqrt(9-y^2)=6cosalpha`
⇒ `sqrt(4-x^2)sqrt(9-y^2)=xy-6cosalpha`
⇒ `(4-x^2)(9-y^2)=x^2y^2+36cos^2alpha-12xycosalpha` [Squaring both sides]
⇒ `36-4y^2-9x^2+x^2y^2=x^2y^2+36cos^2alpha-12xycosalpha`
⇒ `36-4y^2-9x^2+36cos^2alpha-12xycosalpha`
⇒ `9x^2-12xy cosalpha+4y^2=36-36cos^2alpha`
⇒ `9x^2-12xy cosalpha+4y^2=36sin^2alpha`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Solve: `cos(sin^-1x)=1/6`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`4sin^-1x=pi-cos^-1x`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the range of tan−1 x.
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of sin−1 (sin 1550°).
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
What is the principal value of `sin^-1(-sqrt3/2)?`
The set of values of `\text(cosec)^-1(sqrt3/2)`
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
The value of sin `["cos"^-1 (7/25)]` is ____________.