मराठी

If `Cos^-1 X/2+Cos^-1 Y/3=Alpha,` Then Prove That `9x^2-12xy Cosa+4y^2=36sin^2a.` - Mathematics

Advertisements
Advertisements

प्रश्न

If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`

उत्तर

We know

`cos^-1x+cos^-1y=cos^-1[xy-sqrt(1-x^2)sqrt(1-y^2)]`

Now,

`cos^-1  x/2+cos^-1  y/3=alpha,`

⇒ `cos^-1[x/2  y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)]=alpha`

⇒ `x/2  y/3-sqrt(1-x^2/4)sqrt(1-y^2/3)=cos alpha`

⇒ `xy-sqrt(4-x^2)sqrt(9-y^2)=6cosalpha`

⇒ `sqrt(4-x^2)sqrt(9-y^2)=xy-6cosalpha`

⇒ `(4-x^2)(9-y^2)=x^2y^2+36cos^2alpha-12xycosalpha`      [Squaring both sides]

⇒ `36-4y^2-9x^2+x^2y^2=x^2y^2+36cos^2alpha-12xycosalpha`

⇒ `36-4y^2-9x^2+36cos^2alpha-12xycosalpha`

⇒ `9x^2-12xy  cosalpha+4y^2=36-36cos^2alpha`

⇒ `9x^2-12xy  cosalpha+4y^2=36sin^2alpha`
 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.13 [पृष्ठ ९२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.13 | Q 1 | पृष्ठ ९२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write the value of `tan(2tan^(-1)(1/5))`


 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Solve: `cos(sin^-1x)=1/6`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`4sin^-1x=pi-cos^-1x`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the range of tan−1 x.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of sin1 (sin 1550°).


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


What is the principal value of `sin^-1(-sqrt3/2)?`


The set of values of `\text(cosec)^-1(sqrt3/2)`


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×