मराठी

Find : ∫ 2 Cos X ( 1 − Sin X ) ( 1 + Sin 2 X ) D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .

उत्तर

\[\text { Let }  \sin  x   =   t   \Rightarrow   \cos x  dx   =   dt\] 
\[\int\frac{2dt}{\left( 1 - t \right)\left( 1 + t^2 \right)}\] 
\[\text { Using  partial  fraction }\] 
\[\frac{2}{\left( 1 - t \right)\left( 1 + t^2 \right)}   =   \frac{A}{\left( 1 - t \right)} +   \frac{Bt + C}{\left( 1 + t^2 \right)}\] 
\[\text { On  solving } A   = 1,   B   =   1,   C   =   1\] 
\[\int\frac{2dt}{\left( 1 - t \right)\left( 1 + t^2 \right)}   =   \int\frac{dt}{\left( 1 - t \right)} + \int\frac{\left( 1 + t \right)}{\left( 1 + t^2 \right)}dt\] 
\[ = \int\frac{dt}{\left( 1 - t \right)}   +   \int\frac{dt}{\left( 1 + t^2 \right)} + \int\frac{t  dt}{\left( 1 + t^2 \right)}\] 
\[ =    - \ln  (1 - t)   +    \tan^{- 1} t   +   \frac{1}{2}\ln\left( 1 + t^2 \right)\] 
\[ =   \ln  \frac{\sqrt{1 + t^2}}{1 - t}   +    \tan^{- 1} t   +   C\] 
\[\text { Replacing  the  value  of  t }\] 
\[ = \ln  \frac{\sqrt{1 + \sin^2 x}}{1 - \sin x}   +    \tan^{- 1} (\sin  x)   +   C\] 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (March) All India Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


`sin^-1(sin  pi/6)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`sin(cos^-1  5/13)`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`sin(sin^-1  1/5+cos^-1x)=1`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


tanx is periodic with period ____________.


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×