Advertisements
Advertisements
प्रश्न
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
उत्तर
`cos^-1x-cos^-1y=pi/6`
⇒ `pi/2-sin^-1x-pi/2+sin^-1y=pi/6` `[thereforecos^-1x=pi/2-sin^-1x]`
⇒ `-(sin^-1x-sin^-1y)=pi/6`
⇒ `sin^-1x-sin^-1y=-pi/6`
Solving `sin^-1x+sin^-1y=pi/3` and `sin^-1x-sin^-1y=-pi/6` we will get `2sin^-1x=pi/6`
⇒ `sin^-1x=pi/12`
⇒ `x=sin pi/12=(sqrt3-1)/(2sqrt2)`
and
`sin^-1y=pi/3-sin^-1x`
⇒ `sin^-1y=pi/3-pi/12`
⇒ `sin^-1y=pi/4`
⇒ `y=sin pi/4=1/sqrt2`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin3)`
`sin^-1(sin2)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`cosec(cos^-1 3/5)`
Solve: `cos(sin^-1x)=1/6`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
The period of the function f(x) = tan3x is ____________.