मराठी

Evaluate the Following: `Sec^-1(Sec (5pi)/4)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`sec^-1(sec  (5pi)/4)`

उत्तर

We know that

sec-1 (sec θ) = θ,    [0, π/2) ∪ (π/2, π]

 We have 

`sec^-1(sec  (5pi)/4)=sec^-1[sec(2pi-(3pi)/4)]`

`=sec^-1[sec((3pi)/4)]`

`=(3pi)/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 4.3 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin  (7pi)/6)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`cosec(cos^-1  3/5)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If tan−1 3 + tan−1 x = tan−1 8, then x =


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×