Advertisements
Advertisements
प्रश्न
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
उत्तर
\[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right) = \sin^{- 1} \left[ \sin\left( \pi - \frac{2\pi}{5} \right) \right]\]
\[ = \sin^{- 1} \left( \sin\frac{2\pi}{5} \right)\]
\[ = \frac{2\pi}{5}\]
APPEARS IN
संबंधित प्रश्न
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin3)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .