मराठी

The Value of Sin ( 1 4 Sin − 1 √ 63 8 ) is (A) 1 √ 2 (B) 1 √ 3 (C) 1 2 √ 2 (D) 1 3 √ 3 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 

पर्याय

  • `1/sqrt2`

  • `1/sqrt3`

  • `1/(2sqrt2)`

  • `1/(3sqrt3)`

MCQ

उत्तर

(c) `1/(2sqrt2)`

Let \[\sin^{- 1} \frac{\sqrt{63}}{8} = y\]

Then,
\[\sin{y} = \frac{\sqrt{63}}{8}\]
\[\cos{y} = \sqrt{1 - \sin^2 y} = \sqrt{1 - \frac{63}{64}} = \frac{1}{8}\]
Now, we have
\[\sin\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right) = \sin\left( \frac{1}{4}y \right)\]
\[ = \sqrt{\frac{1 - \cos\frac{y}{2}}{2}} \left[ \because \cos2x = 1 - 2 \sin^2 x \right]\]
\[ = \sqrt{\frac{1 - \sqrt{\frac{1 + \cos{y}}{2}}}{2}} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ = \sqrt{\frac{1 - \sqrt{\frac{1 + \frac{1}{8}}{2}}}{2}}\]
\[ = \sqrt{\frac{1 - \sqrt{\frac{9}{16}}}{2}}\]
\[ = \sqrt{\frac{1 - \frac{3}{4}}{2}}\]
\[ = \sqrt{\frac{1}{8}}\]
\[ = \frac{1}{2\sqrt{2}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 28 | पृष्ठ १२१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`sin(sin^-1  1/5+cos^-1x)=1`


`sin^-1x=pi/6+cos^-1x`


`tan^-1x+2cot^-1x=(2x)/3`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×