Advertisements
Advertisements
प्रश्न
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
पर्याय
cot−1 x
cot−1`1/x`
tan−1 x
none of these
उत्तर
(c) tan−1 x
Let `tan^-1x=y`
So, `x=tany`
\[\therefore 2 \tan^{- 1} \left\{ cosec\left( \tan^{- 1} x \right) - \tan\left( co t^{- 1} x \right) \right\} = 2 \tan^{- 1} \left\{ cosec\left( \tan^{- 1} x \right) - \tan\left( \tan^{- 1} \frac{1}{x} \right) \right\} \]
\[ = 2 \tan^{- 1} \left\{ cosec\left( \tan^{- 1} x \right) - \frac{1}{x} \right\}\]
\[ = 2 \tan^{- 1} \left\{ cosec {y} - \frac{1}{\tan{y}} \right\}\]
\[ = 2 \tan^{- 1} \left\{ \frac{1 - \cos{y}}{\sin{y}} \right\}\]
\[ = 2 \tan^{- 1} \left\{ \frac{2 \sin^2 \frac{y}{2}}{\sin{y}} \right\} \]
\[ = 2 \tan^{- 1} \left\{ \frac{2 \sin^2 \frac{y}{2}}{2\sin\frac{y}{2}\cos\frac{y}{2}} \right\}\]
\[ = 2 \tan^{- 1} \left\{ \tan\frac{y}{2} \right\}\]
\[ = y\]
\[ = \tan^{- 1} x\]
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin pi/6)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cot{sec^-1(-13/5)}`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of cos−1 (cos 1540°).
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .