मराठी

2 Tan−1 {Cosec (Tan−1 X) − Tan (Cot−1 X)} is Equal to (A) Cot−1 X (B) Cot−1 1 X (C) Tan−1 X (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to

पर्याय

  • cot−1 x

  • cot−1`1/x`

  • tan−1 x

  • none of these

MCQ

उत्तर

(c) tan−1 x
Let `tan^-1x=y`

So, `x=tany`

\[\therefore 2 \tan^{- 1} \left\{ cosec\left( \tan^{- 1} x \right) - \tan\left( co t^{- 1} x \right) \right\} = 2 \tan^{- 1} \left\{ cosec\left( \tan^{- 1} x \right) - \tan\left( \tan^{- 1} \frac{1}{x} \right) \right\} \]
\[ = 2 \tan^{- 1} \left\{ cosec\left( \tan^{- 1} x \right) - \frac{1}{x} \right\}\]
\[ = 2 \tan^{- 1} \left\{ cosec {y} - \frac{1}{\tan{y}} \right\}\]
\[ = 2 \tan^{- 1} \left\{ \frac{1 - \cos{y}}{\sin{y}} \right\}\]
\[ = 2 \tan^{- 1} \left\{ \frac{2 \sin^2 \frac{y}{2}}{\sin{y}} \right\} \]
\[ = 2 \tan^{- 1} \left\{ \frac{2 \sin^2 \frac{y}{2}}{2\sin\frac{y}{2}\cos\frac{y}{2}} \right\}\]
\[ = 2 \tan^{- 1} \left\{ \tan\frac{y}{2} \right\}\]
\[ = y\]
\[ = \tan^{- 1} x\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 3 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cot{sec^-1(-13/5)}`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of cos−1 (cos 1540°).


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×